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LUBRICANTS MECHANICAL COMPONENTS OF LUBRICATION 

* 

SYSTEMS FOR A SPACE ENVIRONMENT 

by Robert L. Johnson and Donald H. Buckley 
L e w i s  Research Center 

STATEMENT OF PR0BL;EM 

I n  present and fu tu re  devices, bearings and other  load bear ing sur- 
faces ,  including movable j o i n t s ,  must be capable of a wide v a r i e t y  of duty 
cycles  f o r  extended t i m e  per iods i n  space environment without t he  weight 

o penal ty  of sealed systems ( r e f s *  1 and 2) .  Conventional l ub r i can t s  may 
cu not be useful  f o r  extended t i m e  periods because of evaporation or  disso-  
& c i a t i o n  a t  low pressures  ( r e f s .  3 t o  7 ) .  Conventional th in- f i lm lubr ica-  

t i o n  p r a c t i c e  u t i l i z e s  normal oxide f i lms on me ta l l i c  surfaces;  when i n i -  
t i a l  oxide f i lms  are worn away, ruptured, d i ssoc ia ted ,  o r  otherwise removed 
from bearing surfaces  i n  oxygen-deficient environments such as space, con- 
vent iona l  organic and other lubr icants  cease t o  funct ion i n  t h e  usual man- 
n e r  (ref. 8) .  Furthermore, when the  lub r i can t  and the  normal pro tec t ive  
oxide f i l m s  a r e  removed, most metals except those immiscible i n  t h e  l i q u i d  
state (refs. 9 t o  11) a r e  subject t o  i n t e r f ace  welding during s l id ing  and 
r o l l i n g .  
tors i n  space environment t h a t  make lubr ica t ion  problems d i f f i c u l t .  I n  
l a rge  devices,  where c i r cu la t ing  l iqu id  systems are required,  zero g rav i ty  
could be a problem; it i s  not inherent t o  th in- f i lm lub r i ca t ion  processes, 
however. Space r ad ia t ion  l e v e l s  a r e  not s u f f i c i e n t  t o  cause degradation 
of l ub r i ca t ing  and bear ing mater ia l s  t h a t  meet other  c r i t e r i a  f o r  space 
devices. Higher temperatures ( - S O O o  F) , nuclear rad ia t ion ,  and environ- 
ments of thermodynamic working f l u i d s  (e. g., l i q u i d  metals and cryogenic 
f u e l  or oxidants)  provide spec ia l  problems not t r e a t e d  herein.  

M 

CD 

Thus, low pressure and lack  of oxygen a r e  t h e  two primary fac-  

The primary problem of concern is  one of se l ec t ing  designs and l u b r i -  
ca t ing  materials t h a t  w i l l  not suffer  p roh ib i t i ve  evaporation or disso-  
c i a t i o n  and w i l l  func t ion  t o  separate sur faces  i n  r e l a t i w  motion with low 
shear f o r c e  ( f r i c t i o n ) ;  mechanical p a r t s  should be made of materials hav- 
ing minimum s u s c e p t i b i l i t y  t o  surface welding. Special  design considera- 
t i o n  must be given t o  the  d i f f i c u l t  problems of d i s s i p a t i n g  f r i c t i o n a l  
hea t  from devices  operat ing i n  vacuum as w e l l  as of minimizing hea t  gener- 
ation. 

REvIEN OF STATE OF THX ART 

Reduced atmospheric pressures  experienced during operat ion of l i q u i d  
rocket  engines caused lub r i ca t ion  problems i n  e a r l y  b a l l i s t i c  missiles.  
Degassing.and foaming of organic lub r i can t s  a t  t h e  low pressures  (175,000 f t  
pressure altitude) impaired lubr ica t ing  amd cooling effect iveness .  
e a r l y  bear ing failures were a t t r i bu ted  t o  the  foaming, bu t  other  design and 
lub r i ca t ion  f a c t o r s  were probably of predominant importance, 

Some 
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I n i t i a l  space lub r i ca t ion  appl ica t ions  have been concerned with 
l i g h t l y  loaded bearings with both r o t a t i n g  and o s c i l l a t i n g  motion i n  de- 
v i ces  launched i n t o  low o r b i t s  around the  Earth, 
vent ional  mater ia ls  and used common lub r i can t s  t h a t  benef i ted  by r e s t r i c t -  
ed evaporation through the  use of molecular flow seals .  

Bearings were of con- 

From both laboratory experiments and bear ing appl ica t ions  i n  satel- 
l i t e  experiments, two primary approaches t o  the problem of lub r i ca t ion  i n  
bear ings and movable j o i n t s  have been found t o  be usable. F i r s t ,  the  sys- 
t m e s  concept provides f o r  t he  operation of conventional l ub r i can t s  and 
mater ia l s  i n  sealed systemso m e r e  low-vapor-pressure organic l u b r i c a n t s  
are used and the  s e a l  problem i s  i n  the  regime of molecular flow with 
modest temperatures (<20Q0 F), s ign i f i can t  endurance can be achieved f o r  
l i g h t l y  loaded bearings- 
example of t h i s  system concept ( r e f .  12). 
t i o n  of pressure r a t i o  i n  the  regime of pressure flow, complex sea l ing  
assemblies are required where pressurized systems must be sealed aga ins t  
space environment f o r  extended per iods of t i m e ,  

The radiometer bear ings  i n  Ti ros  I1 o f f e r  a good 
Because s e a l  leakage i s  a func- 

. 

Second, the mater ia l s  concept r equ i r e s  the  se l ec t ion  of s t ab le  ma- 
t e r i a l s  for  use i n  direct ,  exposure t o  space environment, Also, the  design 
of bearings and other load-carrying devices must include spec ia l  provis ion 
for removal of heat, from fricrAon and o ther  sources. 
t he  problem of degradation of' l ub r i ca t ing  mater ia ls .  
compounds (e. g o ,  MoS2, WSz:, FSSe2, e t c ,  ), s o f t  metals ( A g ,  Au, etc.  ), s o l i d  
polymers (polytetrafluoroethylene, PWE, polychlorotrifluoroethylene, PCFE, 
polyimide, e t z .  ), and l i q u i d  metals (cog., gall ium) have low vapor pres-  
sures and can provide lub r i ca t ion  f o r  extended per iods o f  t i m e  i n  d i r e c t  
exposure t o  vacuurn ( r e f s .  L j  3, and 13 t o  2 5 ) .  Any preformed f i l m  w i l l  
have a f i n i t e  endurance l i f e  t h a t  can be adversely a f fec ted  by the  evapo- 
r a t i o n  tendencies and  reduced heat t r a n s f e r  t h a t  a r e  c h a r a c t e r i s t i c  of 
vacuum operation. I n  regard t o  heat  d i s s ipa t ion ,  the  polymers requi re  
spec ia l  consideration because of poor hea t - t r ans fe r  propert ies .  I n  the  
i n t e r e s t  of extended endurance l i v e s ,  s o l i d  mater ia l s  including a l u b r i -  
ca t ing  const i tuent  i n  the  s t ruc tu re  can be usefu l  ( r e f s ,  2 0  and 21) .  For 
example, the use of f i l l e d  compositions f o r  r e t a i n e r s  of ro l l ing-contac t  
bearings,  for b a l l  sockets used i n  gimbal bearings,  f o r  i d l e r  gears  t o  
reform films on operating gears,  and for s l i d i n g  bear ings can be useful.  
A similar statement could probably be made f o r  many so l id s  including a 
lubr ica t ing  cons t i tuent  

Heat complicates 
Films of inorganic 

For many years surface reservoi rs  have proven usefu l  i n  the  appl i -  

has been used e f f ec t ive ly  w i t h  an MoS2 - graphi te  mixture f o r  r e t a i n e r s  
of ro l l ing-contac t  bear ings ( r e f .  23) .  I n  t h i s  design considerat ion,  sur- 
face  recesses of various configurat ions a r e  machined or otherwise formed 
on load-bearing surfaces  and subsequently f i l l e d  with a lubr icant ,  such as 
MoSz, and a bonding agent, such as a r e s i n  o r  a n  inorganic compound. 

f-.nf<nn L . U V L V l l  of so l id  lubricat i r lg  rriateriais such as  graphite.  Most r ecen t ly  it 
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The general  p rac t i ce  i n  forming bonded so l id  lub r i ca t ion  f i lms  with 
ma te r i a l s  such as MoS2 i s  t o  roughen the surface p r i o r  t o  appl icat ion.  
The methods used include vapor or g r i t  b l a s t ing ,  chemical etching, and t h e  
formation of t r a n s i t i o n  f i l m s  by surface reac t ion  products (e.g., phos- 
pha tes )  t h a t  have a rough texture .  The use of such roughened surfaces  i m -  
proved endurance l i fe .  The use of surface r e se rvo i r s  mentioned previously 
r ep resen t s  an extension of t h e  surface roughening technique. Bonding 
agents  f o r  so l id  lub r i can t s  represent a l a rge  gamut of organic r e s i n s  and 
inorganic compounds as w e l l  as metals i n  complex formulations. Phenolic 
and esoxy r e s i n s  and sodium s i l i c a t e  a r e  most comonly used. The b e s t  of 
these represent  bu t  marginal improvements over the less sophis t ica ted  use 
of carbonized corn syrup as suggested i n  1946 by Norman (ref. 26) and 
s tudied by NACA ( r e f .  27).  

Thin-fi lm lub r i ca t ion  by gallium ( r e f .  15) i s  an i n t e r e s t i n g  concept 
w i t h  p o t e n t i a l  value. Much research and development data a r e  needed i n  
t h i s  area. 
best  materials for lubr ica t ion .  

Problems e x i s t  as t o  the  optimum method of appl ica t ion  and t h e  

L i t t l e  has  been done t o  develop optimum bearing materials and designs 
f o r  vacuum operation. The performance of s o l i d  lub r i can t s  can be improved 
by proper s e l ec t ion  of bearings mater ia ls  (ref. 24)- Design configurat ion 
f o r  minimum heat  generation and optimum heat d i s s i p a t i o n  are des i r ab le  
(ref. 1). 
inf luence the  behavior of bear ings i n  vacuum (ref. 28). , 

Conditions of operat ion such as v ib ra t ion  have been shown t o  

I n  the area  of se lec t ion  of bearing materials with least p robab i l i t y  
f o r  harmful surface welding, c e r t a i n  a l l o y s  such as t h e  cobal t  a l l o y  
S t e l l i t e  Star-J ,  have usefu l  proper t ies  (ref. 29).  These p rope r t i e s  may 
r e s u l t  from s t ab le  compounds present  as inc lus ions  i n  those al loys.  Such 
compounds replace the  normal surface oxides as they  are worn away. Almost 
any combination of c lean metals w i l l  show surface welding tendencies dur- 
i ng  s l i d i n g  contact;  both mechanical adhesion and a l loy ing  can be obtained 
a t  the in t e r f ace  when complete f i lms  of l ub r i ca t ion  o r  other  surface con- 
taminants l i ke  oxides cannot be maintained. Strong junc t ions  can be es- 
t ab l i shed  by (1) in te r f ace  d i f fus ion  o r  a l loying,  and ( 2 )  mechanical ad- 
hesion from in te r locking  of surface i r r e g u l a r i t i e s .  During r e l a t i v e  mo- 
t i on ,  cold welding can occm even a t  cryogenic temperatures (ref. 30). 
Surface adhesion i s  a fundamental fac tor  i n  all l ub r i ca t ion  processes  
according t o  t h e  most widely accepted and s tudied concepts of f r i c t i o n  be- 
tween s o l i d  surfaces  (ref, 8).  

The occurrance of surface welding i s  much less a p t  t o  occur i n  t h e  
absence of r e l a t i v e  motion between surfaces. S ign i f i can t  adhesion s tud ie s  
have been made i n  air  where surface shear from r e l a t i v e  motion (e.g., 180') 
w a s  used w i t h  loaded annular ( o r  rod  ends) specimens t o  rupture  surface 
f i l m s  such as oxides (ref. 31). Surface shear (1) s t r i p s  off  surface bar- 
biers,  ( 2 )  roughens surfaces ,  (3 )  produces a work-hardened zone j u s t  below 
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t he  surfaces ( 4 )  causes denuded metals t o  come i n t o  atomical ly  c lose  
contact ,  (5)  bu r i e s  t he  surface b a r r i e r  deb r i s  below t h e  surface,  and 
( 6 )  causes in te rpenet ra t ion  of t he  two metals. 
i n  a i r  surface shear s t ra ins  can cause very high adhesion t h a t  i s  compara- 
b l e  t o  tha t  produced between denuded metals i n  very high vacuum (ref .  32). 
Sol id  s o l u b i l i t y  and i n t e r f a c i a l  energies  have been used as bases fo r  pre- 
d i c t i n g  adhesion, but  even more fundamental i s  the  atomic s i z e  f ac to r .  
This concept suggests t h a t  where atomic diameters of metals d i f f e r  by more 
than k15 percent, surface adhesion w i l l  be m i n i m u m  ( r e f .  33). Further- 
more, it has been shown t h a t  metals having l a rge  e l a s t i c  moduli, hardness, 
surface energy, r e c r y s t a l l a t i o n  temperature, and r e s i s t ance  t o  p l a s t i c  
flow are characterized by low c o e f f i c i e n t s  of adhesion. 
c r y s t a l l i z e  i n  the  cubic s t ruc tu re  have a higher tendency t o  s t i c k  than 
those with hexagonal close-packed s t ructure .  

It has been shown t h a t  even 

Also metals t h a t  

Much of the  da t a  ava i l ab le  i n  the  l i t e r a t u r e  on vacuum adhesion, 
f r i c t i o n ,  wear, and lub r i ca t ion  s tudies  i s  open t o  ser ious question. Back 
migration of d i f fus ion  pump o i l s  and condensates from other  sources, such 
as e l e c t r i c a l  insu la t ion ,  contaminate experimental surfaces  and inva l ida t e  
t h e  da t a  obtained. Other data, obtained with clean surfaces  i n  a i r  a r e  f r e -  
quently more meaningful. The danger of accept ing da ta  from contaminated 
vacuum systems i s  t h a t  p o t e n t i a l  problems can be masked by contaminating 
d i f fus ion  p w  o i l .  No source of d i f fus ion  pump o i l  e x i s t s  i n  the  space 
vacuum system. 

Most organic f l u i d  and grease lub r i can t s  t h a t  would be considered f o r  
space appl icat ions can be used t o  t o t a l  r ad ia t ion  dosages of 1010 e r g s  per 
gram of carbon with less than 10  percent change i n  v i s c o s i t y  of t h e  base 
f l u i d  a t  210° F ( r e f .  34), Selected f l u i d s ,  such as polyphenyl e the r s ,  are 
usefu l  a f t e r  s ign i f i can t ly  grea te r  dosage. Inorganic lub r i can t s  have s t i l l  
g rea t e r  s t a b i l i t y ,  The most severe types of space r ad ia t ion  a r e  associ-  
a t e d  with the  Van Allen b e l t  ( r e f .  6 )  where r ad ia t ion  l e v e l s  t o  100 roent-  
gens per hour have been detected and the  p o s s i b i l i t y  of 1000 roentgens per  
hour suggested. 
100,000 hours would be required t o  achieve a r ad ia t ion  dosage of 1010 e rgs  
per  gram as mentioned above. Thus, space r ad ia t ion  should not be a prob- 
l e m  f o r  lubricants .  It should be cautioned, however, t h a t  t he  r ad ia t ion  
l e v e l s  associated with nuclear r eac to r s  do provide a problem i n  l ub r i can t  
s t a b i l i t y .  Radiation s t a b i l i t y  i s  f u r t h e r  improved by the  absence of oxy- 
gen, which makes it poss ib le  t o  consider t h e  use of such mater ia l s  as 
polytetraf luoroethylene base compositions fox bearing surfaces  i n  nuclear 
rockets  where there  i s  l imited o r  no exposure t o  oxygen and where the  oper- 
Ettion i s  for  r e l a t l v e l y  b r l e f  per iods of time. 

A t  t he  maximum f l u x  suggested (1000 roentgens/hr),  

DESIGN CRITERIA 

Rolling-contact bearings,  gears,  and other  p a r t s  i n  s l i d ing  and rol- 
l i n g  contact must be designed f o r  minimum hea t  generation and maximum hea t  
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r e j e c t i o n  by conduction and must include subs t an t i a l  i n t e r n a l  clearance t o  
allow thermal expansion. Wherever possible the  materials of construct ion 
should be a l l o y s  based on hexagonal close-packed metals, which can be i m -  
proved f u r t h e r  with he lp fu l  microstructural  inclusions.  Sol id  lub r i can t s  
can be used as coat ings on a l l  operating pa r t s ,  bu t  they are most commonly 
and e f f e c t i v e l y  employed on the cage ( r e t a i n e r )  of ro l l ing-contac t  bear- 
ings. 
Also, MoS2 can be used as a const i tuent  of a s o l i d  body as w e l l  as appl ied 
i n  f i l m s  bonded with phenolic r e s ins ,  sodium s i l i c a t e ,  or  other  bonding 
agents. A surface t o  which a s o l i d  f i l m  i s  appl ied should be roughened o r  
have surface recesses.  FEFE compositions need f i l l e r s  such as g l a s s  f i b e r s  
t o  prevent cold flow; the use of FTFE a t  subs t an t i a l  surface speeds should 
be avoided i n  vacuum because of t he  poor hea t - t ransfer  propert ies .  
f i l l e r s  and backing can reduce the hea t - t ransfer  problem w i t h  polymers. 

ETFE and MoSz are the two most usefu l  s o l i d  lub r i ca t ing  materials. 

Metal 

Dynamic s e a l s  are not e f f e c t i v e  f o r  sea l ing  atmospheric and higher 
pressures  aga ins t  space vacuu11. Molecular flow seals can be u s e f u l ,  how- 
ever, i f  the  maximum pressure i n  the  bearing housing i s  around 
meters of mercury. 
theory of gases. Conventional organic lub r i can t s  can and should be used 
when they  can be adequately sealed with molecular flow seals.  
cav i ty  would thus  be a t  the  vapor pressure of t h e  lubr icant ,  and any me- 
chanical  f a c t o r s  tha t  would r a i s e  the operating temperature would make such 
a system of very l imi ted  value because t h e  lub r i can t  vapor pressure can 
e a s i l y  exceed the  l imi t ing  pressure for t he  use of molecular flow seals. 
The use of organic f l u i d s  i n  addi t ion t o  so l id  f i l m  l ub r i can t s  i s  not a 
good prac t ice .  
sur faces  of t he  s o l i d  lubr icant  p a r t i c l e s  and the  base metal and w i l l  
g r e a t l y  reduce t h e  endurance l i f e  of the s o l i d  f i l m  by adversely a f f e c t i n g  
the  adhesion and cohesion of t he  film. 
greases  have no s ign i f i can t  e f f e c t  on the rate of evaporation f o r  t he  lu- 
b r i c a t i n g  l iquid.  

milli- 
Leakage can be predicted according t o  the k i n e t i c  

The bearing 

The organic f l u i d s  w i l l  be p r e f e r e n t i a l l y  adsorbed on t h e  

The g e l  s t ruc tu re  or f i l l e r s  i n  

RECOMMENDED PRACTICES AM) ACCEPTABLE: PROCEDURES 

The l i t e r a t u r e  c i t e d  i n  the references contains  a myriad of i s o l a t e d  
recommendations f o r  t he  lub r i ca t ion  of space devices  that are f requent ly  
conf l ic t ing .  A notable e f f o r t  t o  assemble a r a t i o n a l l y  organized s e r i e s  
of recommendations i s  contained i n  reference 35. I n  some matters the ma- 
t e r i a l  recommendations of reference 35 a r e  i n  c o n f l i c t  w i t h  t he  sugges- 

prehensive document. 
I t i o n s  presented herein,  but  there i s  general  agreement w i t h  t h a t  more com- 

Evaporation of Lubricants 

The evaporation of organic lubr icants  may be p roh ib i t i ve  i n  d i r e c t  
exposure t o  space vacuum. Methods of determining evaporation i n  labora-  
t o r y  experiments i s  the  subject  of a survey reported i n  the  appendix. 
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Where lubr ica t ion  can be provided by t h e  vapor a t  modest temperatures, 
molecular flow seals can reduce evaporation and thus  enable p r a c t i c a l  
operat ion for long per iods (e .gn , 1 yr ) .  Useful f l u i d s  include s i l i -  
cones, mineral o i l s ,  and polyphenyl e the r s ,  It f requent ly  i s  most con- 
venient t o  use these  f l u i d s  i n  greases  or t o  employ high molecular weight 
polymers (waxes and p l a s t i c s ) ,  such as F'TFE. 
higher  molecular weights wi th in  c l a s s e s  of materials. 

Evaporation i s  less with 

Inorganic lubr icant  formulations based on MoS2 , gold, s i lver ,  gallium, 
and CaF2 have evaporation rates t h a t  are seve ra l  o rders  of magnitude less 
than the  bes t  of t h e  organics. some i n x g a n i c  compounds t h a t  have lub r i -  
ca t ing  proper t ies  (e.g, , E'DO and Pbs) d i s soc ia t e  i n  vacuum (300° t o  350° F 
a t  mm Hg) and should be avoided. 

Materials f o r  Bearing Surfaces 

Conventional mater ia l s  such as hardened 52100 and 440-C can be em- 
ployed i n  roll ing-element bearings,  bu t  t h e  danger of surface co ld  welding 
w i l l  be reduced i f  S t e l l i t e  S ta r -J  or  a nonhomogeneous t o o l  s teel  Circle-C 
i s  u t i l i zed  f o r  r o l l i n g  e leaents  and/or races.  
having microinclusions of compounds t h a t  i n h i b i t  surface-welding are be ing  
developed. They may have g rea t e r  s u s c e p t i b i l i t y  t o  f a t igue  f a i l u r e  i n  
high load appl ica t i  ons than conventional bear ing  steels, Free-machining 
a l l o y s  usual ly  have similar propert ies .  Aus ten i t ic  s t a i n l e s s  s tee l s  and 
other  homogeneous a l l o y s  should be avcided for s l i d i n g  or r o l l i n g  contac ts  
because of surface welding tendencies. Dimensional s t a b i l i t y  with thermal 
cycl ing i s  an  import,ant requirement for aechanical p a r t s  t h a t  should a l s o  
prevent the use of a u s t e n i t i c  s t a i n l e s s  steels.  High hardness and high 
e l a s t i c  modulus a re  des i r ab le  t o  minimize surface adhesion but  are not  
exclusively required proper t ies ,  A hardmesa of Rockk-ell-C55 i s  considered 
mandatory t o  prevent b r ine i l i ng -  Where high lcads a re  encountered, a high 
e l a s t i c  modulus may r e s u l t  i r l  undesirable s t ress  levels. 

Alloys for vacuum serv ice  

F i l l e d  p l a s t i c  compositions of polyimide-, epoxy-, and PTFE-base ma- 
t e r ia l s  can be usefu i  f o r  r e t a i n e r  materials and idler  gears  t o  supply 
t r a n s f e r  f i lms where the re  i s  unid i rec t iona l  r o t a t i o n  and both ambient 
temperatures and f r i c t i o n a l  heat ing are modest. 
are most commono 

The PIIIFE-base materials 

Thin gold or s i l v e r  f i lms  on metal retainers ( e , g o ,  Circle-C) have 
given extended performance i n  i n d u s t r i a l  vacuum appl ica t ions  f o r  years.  
The key to good f r i c t i o n a l  performance i s  a t h i n  f i l m  (<0.0005 in. t h i c k ) ,  
a hard substrate ,  aficl., i n  some lcaseD, additives (e .& , X i ,  Ii?, and Co i n  
Au, as discussed i n  r e f "  13). 

Solid lub r i can t  f i l m s  t h a t  a r e  extremeiy t h i n  (<1C5 i n . )  can be 
appl ied  on a l l  bear ing surfaces  (e. g o ,  burnished MoS2 a lone ) ,  bu t  usua l ly  
coat ing only t h e  r e t a i n e r  with a somewhat, t h i cke r  f i l m  (>2X10-4 i n . )  i s  
t h e  preferred p rac t i ce  f o r  other  I-ban low-amplitude o s c i l l a t i n g  motion. 
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Coated r e t a i n e r  surfaces should be roughened (ref. 37)  or  have reservoi rs ,  
and t h e  type of coated metal i s  s ign i f i can t  (e.@;. , Mo containing a l l o y s  
f o r  MoSz). 
r e s i n  bonded MoS2 coatings are t y p i c a l  commercial coatings considered use- 
ful. Recently developed MoS2 f i l m s  containing s o f t  metals such as Au and 
Ag i n  t h e  inorganic binder formulations are repor ted  t o  have use fu l  prop- 
er t ies  for aerospace app l i ca t ions  (refs.  38 and 39). 

Sodium s i l i c a t e  bonded MoSz coatings and phenolic containing 

Component Designs 

Angular contact b a l l  bearings with s e l f - l u b r i c a t i n g  r e t a i n e r  materi- 
a ls  are p resen t ly  most useful. 
allow prec i s ion  support with to le rance  f o r  i n t e r n a l  thermal expansion by 
change i n  contact angle. Minimum heat generation i s  obtained with open- 
r ace  curvatures,  such as 54 t o  58 percent r a t h e r  than  standard 5 1 t o  52 
percent. H i g h  f r i c t i o n a l  rolling-element bearing types (e.g., needle 
bear ings)  should be avoided. 
possible.  

With small axial preload, bear ing  p a i r s  

I n t e r n a l  clearances should be as l iberal  as 

Nonmetallic r e t a i n e r s  may require me ta l l i c  support shrouds f o r  high 
r o t a t i v e  speeds. Outer race  p i l o t e d  r e t a i n e r s  are advantageous f o r  high 
speeds because they  t e n d  t o  be self-balancing and may reduce hea t  dissi- 
pa t ion  problems. The most conventional type of r e t a i n e r  shroud, however, 
i s  l imi t ed  t o  configurations employing inner race  p i l o t e d  r e t a ine r s .  

S l id ing  bearings need s e l f  - lubr ica t ion  c a p a b i l i t y  obtainable with 
s o l i d  l u b r i c a n t s  as f i lms  o r  as cons t i tuents  i n  the bearing composition. 
Materials such as FTFE composites and similar se l f - lub r i ca t ing  composi- 
t i o n s  and the  s o l i d  f i lms  mentioned previously are useful. Ceramic-type 
materials a l s o  have poten t ia l .  Adequate c learances  and removal of wear 
d e b r i s  are important considerations. 

Present use of gas bear ings  i s  limited t o  gyro-gimbal bear ings  for 
missile con t ro l  systems with shor t  operation per iod  requirements. The use 
of a closed-cycle system may make extended use of gas bearings f e a s i b l e  
(ref. 40). 

Magnetically supported s h a f t s  are of extreme i n t e r e s t .  The present  
state of development involves excessive w e i g h t  f o r  p r a c t i c a l  use. 
t ens ive  development appears worthwhile (ref. 41). 

In- 

0 
Gearing and other mechanical parts must a l s o  be designed with con- 

s ide ra t ion  f o r  minimum f r i c t i o n ,  e f f e c t i v e  hea t  d i s s ipa t ion ,  thermal ex- 
pansion (ample clearances),  optimum materials t o  l i m i t  surface adhesion, 
and best u t i l i z a t i o n  of t h e  lub r i can t s  s e l ec t ed  (ref. 42). 

Suggestions on the  designs of molecular flow s e a l s  are contained 
i n  re ferences  12, 43, and 44. 
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Sliding e l e c t r i c  contacts  f requent ly  u t i l i z e  a semiconductor, MoS2, 
as a lubr ica t ing  cons t i tuent  i n  the  contact ing mater ia ls .  Such materials 
appear t o  be useful ,  bu t  there  i s  much room f o r  improvement i n  t h i s  prob- 
lem area  ( re fs .  1 and 35). 

PROOF TESTING OF COMPONENTS 

There i s  no s ingle  t e s t  procedure t h a t  can adequately assure  t h e  suc- 
ces fu l  performance of lubr ica ted  components i n  space environment. Specif ic  
procedures f o r  t e s t i n g  the  various components should be considered f o r  each 
type problem. 

Freedom from contamination by extraneous mater ia l s  t h a t  have l u b r i -  
ca t ing  c a p a b i l i t i e s  (such as d i f fus ion  pump o i l s  and degradation products 
from e l e c t r i c a l  i n su la t ion )  i s  an absolute  requirement f o r  a t e s t  system. 
Freedom f rom contamination can be v e r i f i e d  by the  we tab i l i t y  of sur faces  
a f t e r  they have been removed from the  vacuum chamber by using a drop of 
d i s t i l l e d  water. When, as i s  usual ly  the  case,  evaporation of a l u b r i -  
ca t ing  mater ia l  i s  important, a condensing surface with a high capture 
coe f f i c i en t  ( e m g o ,  a l i q u i d  N2 cooled copper p l a t e )  should be used adja- 
cent t o  the component tes ted .  The geometry of the  t e s t  i n s t a l l a t i o n  
should, as f a r  as  possible ,  dupl ica te  t h e  design i n s t a l l a t i o n  i n  t h a t  t h e  
leakage conductmxe f o r  evaporating mater ia l  would be the  same. Tempera- 
t u r e s  must be measured on the  component ( e -g . ,  s ta t ionary  bear ing r ace )  
being tes ted.  Pressures should be measured i n  the  t e s t  chamber adjacent  
t o  the  t e s t .  The pressure l e v e l  f o r  spacre simulation should be lo-' or 
l e s s  mm Hg except where spec ia l  considerat ions a r e  indicated (e .g . ,  a low 
o r b i t  f o r  the vehic le ) .  

Accelerated t e s t i n g  i s  of ten  a, requirement but  must be done cau- 
t ious ly .  An understanding of t he  probable modes of f a i l u r e  w i l l  help i n  
s e l ec t ing  a reasonable acce lera ted  t e s t  procepure. 
so l id  lubr icant  f i lms  usual ly  f a i l  a f t e r  a f i n i t e  number of s t r e s s  cyc les  
with reasonable independence from frequency e f f ec t s .  Therefore, t e s t i n g  
may be done a t  higher f requencies  (speeds) as  long as other considerat ions 
a r e  not s ign i f i can t ly  a l t e r ed .  I f  evaporation i s  expected t o  cause f a i l -  
ure, acce le ra t ion  can be achieved by operat ion a t  higher temperatures f o r  
t he  lubr ica ted  pa r t ;  again,  other  considerat ions should not be s i g n i f i -  
can t ly  a l te red .  Any proposal f o r  acce lera ted  t e s t i n g  should be ca re fu l ly  
reviewed by lubr ica t ion  spec ia l i s t s .  

For example, bonded 

CONCLUDING R W K S  

The discussion presented represents  a summary of design c r i t e r i a  f o r  
consideration i n  space vehicle  l ub r i ca t ion  problems. This t echn ica l  a rea  
i s  not ye t  s u f f i c i e n t l y  developed t o  allow the  publ ica t ion  of designer 
handbook data. With ingenuity and an  understanding of fundamental con- 
cepts ,  however, a competent designer can provide r o t a t i n g  equipment t o  
s a t i s f y  most present  needs f o r  vacuum lubr ica t ion ,  Much meaningful re -  
search i s  now being accomplished i n  t h i s  a r e a  and t h e  des igne r ' s  t a s k  
w i l l  soon become l e s s  d i f f i c u l t .  
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SURVEY AND DETERMINATION OF VACUUM EVAPORATION 

CHARACTERISTICS FOR LUBRICATING MATERIALS 

One of the problems assoc ia ted  with t h e  use of l u b r i c a t i n g  materials 
i n  t h e  environment of space i s  t h a t  of weight loss  i n  vacuum. 
s ~ s t a n t i a l  d i f f e rences  of opinion as t o  t h e  b e s t  type of experimental 
methods and of equipment t o  be used i n  studying t h i s  problem area as w e l l  
as t o  t h e  most s ign i f i can t  method of repor t ing  t h e  data. Furthermore, 
t h e  fundamental processes (such as evaporation) t h a t  are usua l ly  consid- 
e red  t o  occur are not always recognized as such. 

There are 

A ques t iona i re  containing 33 questions pe r t inen t  t o  t h e  problem area 
w a s  s e n t  t o  over 50 organizations. 
those  ind iv idua ls  i n  t h e  organization known t o  be research or  development 
workers with t echn ica l  r e s p o n s i b i l i t i e s  i n  t h e  problem area i n  order t o  ob 
t a i n  the b e s t  t echn ica l  opinions available. There were 33 w r i t t e n  re- 
sponses, 30 of which w e r e  accompanied by completed questionaires.  A l ist-  
i n g  of those who responded with a completed questionaire,  a summary of 
responses t o  t h e  questions, comen t s  rendered p e r t i n e n t  t o  t h e  question, 
and a summation are presented i n  t h e  following pages. 

The ques t iona i res  were d i r ec t ed  t o  

8 
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TABULATION OF QUESTIONAIRE RESULTS 

The quest ionaires  summarized below were completed by ind iv idua ls  who 
were divided among var ious academic backgrounds as follows: 
ing, 10; physics, 4; metallurgy, 4; chemistry, 11. 

engineer- 

When several  individuals  of d i f f e r e n t  backgrounds prepared a s ing le  
quest ionaire  or where an ind iv idua l  had major t r a i n i n g  i n  severa l  f ie lds ,  
f r a c t i o n a l  numbers were used. Thus t h e  weighted response given i s  t h e  
same as the t o t a l  of responses received. Where no response t o  a quest ion 
was indicated,  it w a s  not included i n  t h e  tabulat ion.  Only those  who 
indica ted  no opinion were used as t h e  b a s i s  f o r  t h e  t abu la t ion  i n  t h a t  
colwnn. 

Que s t i on 

1. Are you famil iar  with t h e  c l a s s i c  work of Langmuir, 
Knudsen, Hickman, and Dushman on evaporation and 
vapor pressure? 

2. Would t h e  work of those inves t iga , tors  provide an 
adequate basi s f o r  def in ing  an evaporation 
experiment? 

3. I n  space s inula ted  (vacuum) experiments, a r e  the  
Wngmuir c0ncept.s v a l i d  i n  the  evaporation process? 

4. Can a Knudsen c e l l  (embodying flow through an o r i f i c e  
from vapor pressure t o  a vacuum chamber) t r u l y  
represent a space evaporative condi t ion? 

5. Are outgassing, evaporation, and py ro ly t i c  degra- 
dation th ree  d i s t i n z t l y  d i f f e r e n t  processes? 

6. Is ambient pressure important i n  t h e  evaporation 
proc e s s ? 

7. I n  the evaporation process,  i s  exposed surface 
area of the  evaporating mater ia l  important? 

8.  Should evaporation da ta  be presented as weight 
l o s s  per u n i t  of exposed surface area r a the r  
than percent weight l o s s?  

9. Is  the evaporation process i n  vacuum appl icable  
f o r  high molecular weight polymeric mater ia l s?  

- 
Ye s 

- 
27 

22 

19 

11 

27 

24 

26 

24 

12 

- 
JO 

- 
2 

3 

2 

14 

2 

2 

4 

3 L 

11 

. 

No 
pinion 
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t 

Que s t  i on 

10. Is  vesse l  geometry important i n  evaporation s tudies ,  
f o r  example, do vesse l  w a l l s  above the  outer  edge of 
sample r e s t r i c t  evaporation? 

11. Are dTrect temperature measurements a n  absolute  
requirement i n  evaporation experiment? 

12. Are ind i r ec t  temperature: measurements acceptable,  
such as by a ca l ibra ted  thermocouple adjacent t o  
t h e  evaporating material? 

13. I s  co r re l a t ion  of evaporation data with t h e  calcu- 
lated values based on t h e  Langmuir equation an 
adequate b a s i s  f o r  judging t h e  va l id i ty  of the  da ta?  

14. Can weight l o s s  data obtained a t  temperatures above 
t h e  threshold of pyro ly t ic  degradation be used as a 
basis f o r  evaluating evaporation rates a t  much &owe1 
temperatures? 

15. Are energies  of t he  chemical bonds i n  a molecule im-  
por tan t  t o  evaporation rates a t  temperatures where 
t h e r e  i s  no pyrolysis ,  f o r  example, i n  a hydrocarbor 
and i t s  fluorocarbon analog? 

16. I n  simulating space conditions,  should provision be 
made t o  remove (condense) evaporated species  fromthc 
system t o  prevent r e t u r n  of evaporating materials t c  
t h e  parent surface? 

17 .  W i l l  emissivi ty  between t h e  evaporating surface 
(100' t o  1000° F) i n  a vacuum and a cryogenic con- 
densing surface (-200° F) i n  close proximity (1 t o  
2 i n , )  influence the  real surface temperature of the  
evaporating mater ia l?  

18. Is  d i f fus ion  important i n  the  evaporation process 
with l iqu ids?  

19. I s  d i f fus ion  important i n  t h e  evaporation process 
with so l id s?  

20. If t h e  answer t o  question 1 9  i s  yes, i s  d i f fus ion  
i q o r t a n t  f o r  homogeneous materials? 

Ye I 

- 
26 

17 

13 

10 

12 

28 

20 

18 

2 1  

14 

NO 

- 

9 

13 

9 

25 

14 

2 

8 

4 

8 

~ 

No 
ipinio 

3 

2 

2 

8 

3 

3 

7 

2 

4 

4 
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Question 

!1. 

22. 

?3. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

Is diffusion important t o  t h e  evaporative process  
of hetergeneous mater ia l s?  

If diffusion i s  important, i s  the  process  de- 
pendent upon surface area? 

Are a l l  gas-sol id  processes dependent upon t h e  
s o l i d  surface area, t h a t  i s ,  i f  i n  oxidat ion a 
weight increase i s  noted or i n  evaporation a 
weight loss  noted, are these areas dependent? 

If diffusion i s  important, i s  specimen geometry 
a l s o  important? 

With materials such as o i l s ,  greases,  and s o l i d  
polymers, can t h r e e  processes occur i n  vacuum, 
evaporation, d i f fus ion ,  and pyro ly t ic  degradation? 

Does a TGA apparatus (thermogravimetric ana lys i s )  
without modification give a system which simulates 
conditions encountered i n  space with a material 
which i s  evaporating? 

With those materials which are poor thermal con- 
ductors,  do temperature grad ien ts  ex is t  from the  
surface t o  wi th in  the  material when such a material 
i s  r ad ian t ly  heated? 

If the answer t o  question 27 i s  yes, does t h e  sur- 
face  become of prime importance i n  t h e  evaporation 
and degradation of materials s ince t h e  energy f o r  
such processes w i l l  be higher a t  t h e  surfaces? 

I n  the evaporation of polymers are only monomers 
lost.? 

Can higher molecular w e i g h t s  than monomers evapo- 
rate from polymers? 

Would the use of a mass spectrometer i n  evaporation 
experiments be des i rab le?  

Ye s 

- 
22 

2 3 '  

2 5  

2 5  

27 

2 

26 

24 

1 

24 

26 

NO 
pinion 

4 

3 

4 

2 

1 

10 

2 

2 

7 

6 

2 
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?o Que s t  i on es No 
opinion 

4 5  

7 

~~ 

32. If t h e  answer t o  question 31 i s  yes, can it be used 
t o  d i s t ingu i sh  between evaporation and degradation 
based on t h e  f a c t  t h a t  t h e  ion source of t h e  mass 
spectrometer will fragment such materials as the o i l  
and polymer molecules t h a t  evaporated? 

17 

33. If t h e  answer t o  question 31 i s  yes, should t h e  mass /2O 
spectrometer be placed as close as poss ib l e  t o  the 
source of evaporating material t o  avoid recombination 
and condensation on o ther  surfaces which might promot 
such recomb i n a t  ions ? 

~ 

COMMENTS ON QUESTIONS 

I n  answering the questionaire,  many ind iv idua ls  f e l t  tha t  some 
comments should accompany t h e i r  answers. A l l  t h e  comments made were 
summarized and are presented f o r  each question of the questionaire.  The 
comments are not necessar i ly  representa t ive  of the majority of opinions 
expressed b u t  are merely a condensation of comments by people who wished 
t o  expand on t h e i r  yes o r  no r ep l i e s .  The numbers r e f e r  t o  t h e  question 
listed. 

2. (a)  Good s t a r t i n g  point. 
( b )  Def in i t ion  of evaporation. 
( c )  Providing only evaporation takes place. 

3.(a) Only i f  ambient pressure i s  s u f f i c i e n t l y  low. 

4. (a)  Provided a l l  anomalies are resolved. 
(b) One could be designed. 

5. (a )  A l l  t h r e e  processes may occur simultaneously. 
(b)  Dif fe ren t  types of bond rupture are involved i n  t h e  t h r e e  processes. 

6. (a) Down t o  pressure when the mean free path equals the container 
dimen s i  ons. 

( b )  A t  p ressures  t o  t o r r .  
( c )  Ambient pressure i s  important u n t i l  it i s  reduced t o  one-tenth that  

of t h e  vapor pressure. 

7. (a)  Ekposed surface area i s  not important t o  evaporation rate bu t  i s  i n  

(b)  There i s  no reason for surface area t o  be an experimental variable.  
considering t o t a l  weight loss. 



- 16 - 

8. ( a )  Yes, bu t  r a t h e r  d i f f i c u l t  because r e a l  a rea  i s  unknown. 

9. ( a )  Polymeric mater ia l s  may contain a v a r i e t y  of bound and semibound 
chunks of molecules, which would probably be re leased  i r r e v e r s i b l y  
a t  various pressures  and temperatures. 

(b )  Possible; however, f requent ly  the  molecular w e i g h t  i s  so high and 
vapor pressure so low t h a t  thermal degradation occurs before  evap- 
oration. 

lO.(a) Yes, because c o l l i s i o n s  of evaporating molecule with ves se l  w a l l  
w i l l  reduce amount of mater ia l  l o s t .  

(b )  Vessel wal l  can a c t  as a ba f f l e .  
( c )  Labyrinth vesse l  can be used t o  reduce evaporation. 

12.(a)  Yes, i f  they give the  temperature of evaporating surface. 
(b)  Yes, i f  properly cal ibrated.  
( c )  Yes, r e s u l t s  must be in t e rp re t ed  ca re fu l ly ,  however, because heat  

loss through vaporizat ion would cool  t he  surfaces.  

13.(a) Yes, f o r  homogeneous mater ia ls .  
(b )  Yes, i f  Lang-muir data were not o r i g i n a l l y  obtained by converse 

process. 

14.(a) No: A s  indicated i n  question 5, you have two d i s t i n c t l y  d i f f e r e n t  
processes. 

( b )  Depends on the  de f in i f ion  of th reshold  of pyro ly t ic  degradation. 

15. ( a )  Hydrogen bonding between molecules could have an  e f f e c t .  

16.(a) Importance of t h i s  provis ion depends upon condi t ions under which 
t h e  process t akes  place. 

17.(a) It i s  poss ib le  t o  ad jus t  heat  input  t o  maintain constant  tempera- 
ture .  

18. ( a )  It could be f o r  a mixture of l i qu ids .  
(b )  I n  l iqu ids ,  surface evaporation r e s u l t s  i n  a lowered surface tem- 

perature ,  and d i f fus ion  i n  the  l i q u i d  i s  required t o  r e s t o r e  tem- 
perature  equilibrium. 

( c )  F i c k ' s  laws of d i f fus ion  and evaporation use completely d i f f e r e n t  
un i t s  of measure; however, both processes a r e  temperature dependent. 

( d )  Function of concentration. 

1 9 . ( a )  This question can be answered e i t h e r  way depending upon the  ma- 
t er i a  l s involved. 

polymer. 
( b )  Not for a pure c r y s t a l l i n e  so l id ,  but  it could be f o r  p l a s t i c i z e d  
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20.(a) It may be if evaporation i s  a strong func t ion  of t h e  p a z t i c u l a r  

c r y s t a l l i n e  sur face  and replenishment i s  by d i f fus ion .  

22.(a)  Process a l s o  depends upon mass and geometry of specimen. 
(b) It depends upon t h e  r e l a t i v e  importance of t h e  two processes. 
( c )  The rate of mass l o s s  due t o  d i f fus ion  would be p ropor t iona l  t o  

su r face  area. 
( d )  Dependent t o  some degree. 

23.(a) There are exceptions to  t h i s  s i t u a t i o n  such as materials wi th  high 
d i s s o c i a t i o n  pressures.  

(b)  Processes  a l s o  depend upon mass and geometry of specimens. 
( c )  It depends upon t h e  rate con t ro l l i ng  process. 

24. (a)  Y e s ,  wi th  sur face  a rea  and specimen th ickness  be ing  t h e  more i m -  
p o r t a n t  geometric parameters. 

25. (a )  A fou r th  process  could be added, i. e. , degassing. 

26. (a)  There appears t o  be no genera l ly  accepted d e f i n i t i o n  of a TGA 

(b )  Source t o  w a l l  would not be long enough. 

- apparatus. - 

27.(a)  Depends upon th i ckness  of sample and whether it i s  heated from one 
s i d e  o r  both. 

pr oper t  i e  s 
(b )  Depends upon t h e  hea t  flux, the th ickness ,  and t h e  s u b s t r a t e  thermal  

2 8 . ( a )  The region of h ighes t  temperature would be t h e  reg ion  of h ighes t  
a c t i v i t y  whether it i s  evaporation, degradation, o r  d i f fus ion .  

( b )  Dangerous t o  gene ra l i ze  regarding one f a c t o r .  

29.(a)  It would depend on whether t h e  material could be only a vapor a t  

(b)  Polymers conta in  low molecular weight fragments, p l a s t i c i z e r s ,  and 
t h e  t e s t  temperature. 

entrapped gases  and vapors which must be considered. 

32. (a)  Depends upon method of degradation. 
(b ) Depends upon na ture  of evaporating material. 

SUMMATION OF QUESTIONAIRE 

The following summary remarks are based on t h e  responses  t o  t h e  
ques t iona i r e  : 

1. Most i nd iv idua l s  po l l ed  were f a m i l i a r  with t h e  c l a s s i c  work on 
evaporat ion r epor t ed  i n  t he  l i t e r a t u r e  and agree t h a t  t h e  concepts of 
Langmuir are v a l i d  i n  de f in ing  an  evaporation e q e r i m e n t .  
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2. A Knudsen c e l l  general ly  does not represent  a space evaporative 

condi t ion but with proper modifications and/or precaut ions it can be use- 
f ul. 

3. Outgassing, evaporation, and py ro ly t i c  degradation a r e  th ree  d i s -  
t i n c t l y  d i f f e ren t  processes. 

4. Ambient pressure and exposed surface area a r e  important. Evapora- 
t i o n  da ta  should be presented as weight l o s s  per u n i t a r e a  r a t h e r  than per- 
cent weight loss. 

5. Vessel geometry i s  important t o  t h e  evaporative process. 

6. Mixed views a r e  he ld  concerning temperature measurements of speci-  
mens. Some f e e l  d i r e c t  measurements are necessary, o thers  f e e l  i n d i r e c t  
measurements with proper c a l i b r a t i o n  a r e  adequate. 

7. Pyrolytic degradation data cannot be extrapolated t o  give evapor- 
a t i o n  r a t e s  a t  lower ambient temperatures. 

8. It i s  important t o  remove evaporating species  from the  system. 

9. I n  general ,  d i f fus ion  i s  s ign i f i can t  t o  the  evaporation process 
and d i f fus ion  i s  dependent upon surface area.  

10. Specimen geometry i s  important. 

11. With o i l s ,  greases,  and so l id  polymers i n  vacuum, a l l  t h ree  pro- 
cesses,  evaporation, d i f fus ion  and pyro ly t ic  degradation, can occur. 

12 .  A standard unmodified TGA apparatus does not simulate space con- 
d i t i o n s  for  a mater ia l  evaporating. 

13. Thermal grad ien ts  do e x i s t  i n  r ad ian t  heat ing of mater ia l s  which 
a r e  poor thermal conductors. I n  such m a t e y i a l s ,  surface area i s  i m -  
por tant .  

14. Higher molecular weight species than monomers evaporate from 
polymers. 

15. A mass spectrometer would be a d e f i n i t e  a s s e t  t o  evaporation 
experiments. 
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